search
main
Топ 10
Оренбургский учитель вернулся с СВО: ученики не смогли сдержать эмоций Татьяна Голикова: отечественная система образования нуждается в квалифицированных педагогах Минпросвещения предстоит внести предложения касательно подходов к оплате труда педагогов «Школа Минпросвещения России»: в 2023 году разработают новую модель аттестации директоров В Госдуме предложили наделить учителей статусом и зарплатой госслужащего День Земли: 3 апреля школьникам расскажут о грамотном экологическом поведении Вниманию абитуриентов: в 2023 году количество специальностей для поступления в вузы сокращается в два раза Травма ребенка обошлась школе в Республике Коми в полмиллиона рублей Нормативы ГТО в 2023 году – что поменялось в новой редакции Зарплата в 120 тысяч, статус и гарантии, как у госслужащих: учителя давно этого ждут Год педагога и наставника стартовал в Москве Российским школам поэтапно ограничат доступ к зарубежным видеосервисам Имя победителя профессионального педагогического конкурса огласили в Орловской области В Москве огласили имена победителей Всероссийской олимпиады школьников по экономике Запись в первый класс: когда, где и как подать документы Ранние занятия могут стать причиной плохих оценок студентов и школьников: почему – узнали ученые В МФТИ отказались от реформ в преподавании иностранных языков Тренажеры по чистописанию в начальной школе – основа грамотной письменной речи Минпросвещения: учебник по обществознанию разрабатывается под руководством председателя РВИО Есть только миг: об истории «Учительской газеты» рассказали в Сочи
0

Роботы в толпе

Первый шаг к разработке алгоритмов уже сделан

Все, похоже, идет к тому, что на улицах будет появляться все больше роботизированных устройств. Это и автомобили без водителей, и дроны-беспилотники, и автономные тележки-курьеры, и роботы-уборщики. Но смогут ли они эффективно передвигаться в условиях повышенной плотности мегаполиса, когда вокруг много людей или других машин? Над этим недавно задумались специалисты и студенты Национального исследовательского технологического университета «МИСиС», Национального исследовательского университета «ИТМО» и Московского физико-технического института, разработавшие специальную нейросеть для изучения физики толпы – так называемого цифрового двойника, позволяющего проводить отраслевые исследования, связанные с навигацией в хаотических окружениях.

Сегодня мы принимаем как данность то, что ряд функций, не требующих высокоинтеллектуальных навыков и гибкости мышления, в недалеком будущем станут выполняться роботами. Так, достаточно будет забить в устройство маршрут, и беспилотное такси довезет вас до места, электронный курьер доставит заказ по адресу, а кибернетический пылесос произведет уборку территории. Казалось бы, это выгодно всем.

С экономической точки зрения поставщикам услуг, конечно, надо будет сначала вложиться в оборудование. Но впоследствии эти вложения окупятся, так как роботу не надо платить зарплату. Да и многим потребителям взаимодействие с автоматизированным сервисом придется по душе. Если вы имеете дело с живым водителем или курьером, то не исключены различные накладки, связанные с человеческим фактором, когда сотрудник оказывается неадекватен, некачественно выполняет свою работу, вступает в конфликты и т. д.

В случае с роботами ничего подобного происходить не должно, они вроде бы не могут отступать от заданной программы. К тому же не все люди настроены на живые контакты, тем более в условиях пандемии. Для многих куда предпочтительнее было бы иметь дело с электроникой.

Так, некоторое время назад на улицах новозеландской столицы Веллингтон появились четырехколесные роботы DRU, занимающиеся доставкой пиццы от компании Domino’s Pizza, которая разработала эту модель совместно с австралийской компанией Marathon Robotics. Тестирование в полуавтономном режиме проходило на территории Австралии.

DRU способны передвигаться по тротуарам и велосипедным дорожкам со скоростью до 20 километров в час при помощи встроенной системы навигации. Робот оснащен лазерными датчиками, которые помогают ему объезжать препятствия. Доставка осуществляется прямо к двери дома клиента. Чтобы забрать у робота заказ, необходимо набрать специальный код безопасности на смартфоне.

Но, как говорится, гладко бывает только на бумаге. Да, все эти машины оснащены датчиками, которые позволяют им обходить и объезжать препятствия в условиях относительно свободного пространства. Например, там, где плотность населения невелика. Однако лавировать в большом скоплении постоянно движущихся объектов, скажем, в центре огромного города, им будет нелегко. Тем более датчики не способны моментально реагировать на перемещения окружающих объектов.

Даже в закрытом помещении, где мало людей и нет движения, робот способен застрять, не в силах обойти какую-то преграду. А что будет происходить на открытом пространстве? Если за рулем автомобиля человек, он в нужный момент сумеет затормозить или свернуть в сторону, объехать препятствие. Если на улице встречаются два прохожих и возникает опасность столкновения, то они попытаются как-то обойти друг друга. А роботу для этого нужно время.

Кроме того, датчики не всегда срабатывают корректно и периодически загрязняются. А на улице концентрация грязи и пыли куда больше, чем в помещении… Да и последствия при столкновении человека и машины могут оказаться куда плачевнее, чем если случайно столкнутся двое людей.

Ну проблему с загрязнением датчиков еще можно как-то решить, регулярно проводя их очистку или установив какую-то систему для самоочистки. Для управления же устройствами в условиях толпы необходимы отслеживание и экстраполяция траектории каждого отдельного объекта, что является довольно сложной задачей. Между тем у движения в толпе тоже есть свои законы, и если заставить роботизированные устройства «выучить» эти алгоритмы, то их движение может стать куда более продуктивным и безопасным.

Как правило, принципы «роевого движения» изучают на схемотехнических моделях в условиях полигонов, где присутствует большое количество роботов-моделей. В данном же случае речь идет о разработке цифровой модели «активной материи». Исследователи полагают, что графовые нейронные сети помогут выявить базовые принципы движения в «активной среде», то есть на дорогах городов и в других плотно заполненных пространствах с большой интенсивностью нерегулярного движения.

Таким образом удастся усовершенствовать алгоритмы управления роботизированными устройствами. «Возможность эффективного построения подобного программного обеспечения подтверждается недавними применениями графовых нейронных сетей в схожих задачах, включая симуляции гидродинамики», – прокомментировал сотрудник НИТУ «МИСиС» Вадим Порватов.

Пока универсальных алгоритмов, которые бы оптимизировали до максимума движение роботов в толпе, не существует. Но первый шаг уже сделан. «Разработанная нейронная сеть позволит научным группам существенно упростить процесс изучения физических процессов в плотных скоплениях хаотически движущихся частиц и может поставляться как продукт, – заявляют авторы разработки. – Извлечение всех координат и скоростей роботов позволит получить исчерпывающее описание процессов, происходящих в системе, в том числе информацию о фазовых переходах и кластеризации роботов».

Ирина ШЛИОНСКАЯ

Оценить:
Читайте также
Комментарии

Реклама на сайте